有趣的天文小知识

网上有关“有趣的天文小知识”话题很是火热,小编也是针对有趣的天文小知识寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。一、天王星和太阳系...

网上有关“有趣的天文小知识”话题很是火热,小编也是针对有趣的天文小知识寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。

一、天王星和太阳系的其他行星运转方式都很不一样,自转倾角达到了97度,几乎倒在了绕太阳公转的轨道平面上,自转轴冲着太阳。这种公转方式,使得它南北两极的极昼或极夜会持续42年之久,天王星上的一年是84个地球年。只有沿着天王星赤道周围那一圈狭窄的区域,会有频繁又快速的昼夜交替。

二、我们夜晚仰望星空时,看到的星体其实都是它们过去的样子。因为它们离地球太遥远了,距离是以光年为单位。光年就是光在真空中传播一年的距离。而我们能看到它们,靠的就是它们发出来的光芒。所以,它们的光在到达我们的眼睛里之前,已经在宇宙中飞驰了很多年。

三、离太阳最近的恒星是比邻星,它是半人马座α三合星的第三颗星,距离地球4.22光年,有一颗叫比邻星b的行星绕其公转。比邻星还有两个伴星是半人马座α星A和半人马座α星B。半人马座α星A和半人马座α星B互相绕转,比邻星带着比邻星b绕它们两个的外围旋转。所以,它们3颗恒星,每一颗都有比另外两颗离太阳更近的时候,不过把它们分别离太阳最近的距离进行比较,还是比邻星最近。

由于比邻星的质量小、亮度低,是一颗红矮星,视星等在10至11等之间,人的眼睛能看到最暗的星视星等在6等左右,所以在夜空中,仅凭肉眼无法看到比邻星。

四、恒星和行星、卫星一样,也有自转。没有绝对静止的天体,太阳也不例外。太阳和地球一样,也在自西向东自转。但太阳不是固体星球,赤道处和南北两极处的自转速度和周期是不一样的。离太阳赤道越近,自转周期越短。太阳赤道处的自转周期是25.4天,两极是36天,足足相差了11天。大家所熟悉的天鹰座α星,也就是牛郎星,它平均不到8个小时就自转一周。

五、位于火星和木星之间的小行星带中,体积最大的四颗天体是谷神星、智神星、婚神星和灶神星。其中谷神星是小行星带中质量和体积最大的天体,而且它虽然身在小行星带,却不是小行星,而是属于矮行星。谷神星平均直径是952千米。1801年的元旦晚上,天文学家皮亚齐发现了它。

天文学基础知识天文学研究意义

太阳是太阳系的中心天体,是离我们最近的一颗恒星。太阳系的九大行星和其他天体都围绕它运动。太阳与地球的平均距离为14960万公里,半径为69.6万公里,为地球半径的109倍,体积为地球的130万倍,质量为地球的33万倍(占整个太阳系质量的99.86%),平均密度为1.4克/厘米3。太阳具有强大的吸引力,是控制太阳系天体运动的主要力量源泉。

 太阳是一个炽热的气体球,表面温度约6000℃,愈向内部温度愈高,中心温度高达1500万K。在这样的高温高压下,太阳中心区不停地进行着氢核聚变成氦核的热核反应,产生巨大的能量。太阳每秒钟释放出约4×1033尔格的能量,相当于0.5亿亿亿马力;其中只有二十二亿分之一的能量辐射到我们的地球,是地球上光和热的主要来源。

 太阳是银河系中的一颗普通恒星,位于银道面之北的猎户座旋臂上,距银心约2.3光年,它以每秒250公里的速度绕银心转动,公转一周约需2.5亿年。太阳也在自转,其周期在日面赤道带约25天;两极区约为35天。通过对太阳光谱的分析,得知太阳的化学成分与地球几乎相同,只是比例有所差异。太阳上最丰富的元素是氢,其次是氦,还有碳、氮、氧和各种金属。据推算,太阳的寿命约为100亿年,目前已度过约50亿年。

 行星

 沿椭圆轨道环绕太阳运行的、近似球形的天体叫行星。太阳系有九大行星,按距离太阳的次序是:水星、金星、地球、火星、木星、土星、天王星、海王星和冥王星。冥王星离太阳最远,其轨道直径约120亿公里;天文学家认为太阳系的疆界可能比这个范围还要大得多。

 九大行星按它们距离太阳的远近分为内行星和外行星两群:水星、金星、地球和火星为内行星;木星、土星、天王星、海王星、冥王星为外围行星。若按它们的质量、大小和结构特征,则分为类地行星和类木行星两类。体积小而密度大、自转慢、卫星少的行星与地球相似,称为类地行星,如水星、金星、火星称为类地行星;体积大而密度小,自转相当快、卫星多的行星称为类木行星,土星、天王星、海王星和冥王星都是类木行星。

 行星本身不发射可见光,以其表面反射太阳光而发亮。在星空背景上,行星有明显的相对移动。这种移动都沿着黄道进行。九大行星中,最先被人们知道的是水星、金星、火星、木星和土星。太阳系中的另外三颗行星是在发明天文望远镜后发现的。1781年英国F.W.赫歇耳发现天王星;法国的勒威耶和英国的亚当斯各自推算出海王星的位置,1846年由德国的伽勒所观测到;冥王星则是1930年由美国的汤博发现。

什么是天文学

天文学是观察和研究宇宙间天体的学科,它研究天体的分布、运动、位置、状态、结构、组成、性质及起源和演化,是自然科学中的一门基础学科。以下是由我整理关于天文学知识的内容,希望大家喜欢!

天文学小知识

天文学是观察和研究宇宙间天体的学科,它研究天体的分布、运动、位置、状态、结构、组成、性质及起源和演化,是自然科学中的一门基础学科。天文学与其他自然科学的一个显著不同之处在於,天文学的实验 方法 是观测,通过观测来收集天体的各种信息。因而对观测方法和观测手段的研究,是天文学家努力研究的一个方向。在古代,天文学还与历法的制定有不可分割的关系。现代天文学已经发展成为观测全电磁波段的科学。

天文学所研究的对象涉及宇宙空间的各种物体,大到月球、太阳、行星、恒星、银河系、河外星系以至整个宇宙,小到小行星、流星体以至分布在广袤宇宙空间中的大大小小尘埃粒子。天文学家把所有这些物体统称为天体。地球也是一个天体,不过天文学只研究地球的总体性质而一般不讨论它的细节。另外,人造卫星、宇宙飞船、空间站等人造飞行器的运动性质也属于天文学的研究范围,可以称之为人造天体。

天文学的起源可以追溯到人类 文化 的萌芽时代。远古时代,人们为了指示方向、确定时间和季节,而对太阳、月亮和星星进行观察,确定它们的位置、找出它们变化的规律,并据此编制历法。从这一点上来说,天文学是最古老的自然科学学科之一。

天文学就本质上说是一门观测科学。天文学上的一切发现和研究成果,离不开天文观测工具——望远镜及其后端接收设备。在十七世纪之前,人们尽管已制作了不少天文观测仪器,如中国的浑仪、简仪,但观测工作只能靠肉眼。1608年,荷兰人李波尔赛发明了望远镜,1609年伽里略制成第一架天文望远镜,并作出许多重要发现,从此天文学跨入了用望远镜时代。在此后人们对望远镜的性能不断加以改进,以期观测到更暗的天体和取得更高的分辨率。1932年美国人央斯基用他的旋转天线阵观测到了来自天体的射电波,开创了射电天文学。1937年诞生第一台抛物反射面射电望远镜。之后,随着射电望远镜在口径和接收波长、灵敏度等性能上的不断扩展、提高,射电天文观测技术为天文学的发展作出了重要的贡献。二十世纪后50年中,随着探测器和空间技术的发展以及研究工作的深入,天文观测进一步从可见光、射电波段扩展到包括红外、紫外、X射线和γ射线在内的电磁波各个波段,形成了多波段天文学,并为探索各类天体和天文现象的物理本质提供了强有力的观测手段,天文学发展到了一个全新的阶段。而在望远镜后端的接收设备方面,十九世纪中叶,照相、分光和光度技术广泛应用于天文观测,对于探索天体的运动、结构、化学组成和物理状态起了极大的推动作用,可以说天体物理学正是在这些技术得以应用后才逐步发展成为天文学的主流学科。

天文学始终是哲学的先导,它总是站在争论的最前列。作为一门基础研究学科,天文学在不少方面是同人类社会密切相关的。时间、昼夜交替、四季变化的严格规律都须由天文学的方法来确定。人类已进入空间时代,天文学为各类空间探测的成功进行发挥着不可替代的作用。天文学也为人类和地球的防灾、减灾作着自己的贡献。天文学家也将密切关注灾难性天文事件——如彗星与地球可能发生的相撞,及时作出预防,并作出相应的对策。

天文学研究方法

天文学研究的对象有极大的尺度,极长的时间,极端的物理特性,因而地 面试 验室很难模拟。因此天文学的研究方法主要依靠观测。由于地球大气对紫外辐射、X射线和γ射线不透明,因此许多太空探测方法和手段相继出现,例如气球、火箭、人造卫星和航天器等。

天文学的理论常常由于观测信息的不足,天文学家经常会提出许多假说来解释一些天文现象。然后再根据新的观测结果,对原来的理论进行修改或者用新的理论来代替。这也是天文学不同于其他许多自然科学的地方。

天文学的研究意义

天文学的研究对于我们的生活有很大的实际意义,对于人类的自然观有很大的影响。古代的天文学家通过观测太阳、月球和其他一些天体及天象,确定了时间、方向和历法。这也是天体测量学的开端。如果从人类观测天体,记录天象算起,天文学的历史至少已经有五六千年了。天文学在人类早期的文明史中,占有非常重要的地位。埃及的金字塔、欧洲的巨石阵都是很著名的史前天文遗址。哥白尼的日心说曾经使自然科学从神学中解放出来;康德和拉普拉斯关于太阳系起源的星云说,在十八世纪形而上学的自然观上打开了第一个缺口。

牛顿力学的出现,核能的发现等对人类文明起重要作用的事件都和天文研究有密切的联系。当前,对高能天体物理、致密星和宇宙演化的研究,能极大地推动现代科学的发展。对太阳和太阳系天体包括地球和人造卫星的研究在航天、测地、通讯导航等部门中都有许多应用。天文起源于古代人类时令的获得和占卜活动。

天文学循着观测-理论-观测的发展途径,不断把人的视野伸展到宇宙的新的深处。随着人类社会的发展,天文学的研究对象从太阳系发展到整个宇宙。现今,天文学按研究方法分类已形成天体测量学、天体力学和天体物理学三大分支学科。按观测手段分类已形成光学天文学、射电天文学和空间天文学几个分支学科。

天文学研究对象

天文学的研究对象是各种天体。地球也是一个天体,因此作为一个整体的地球也是天文学的研究对象之一。最初,古人观察太阳、月球和天空中的星星来确定时间、方向和历法,并记录天象。

随着天文学的发展,人类的探测范围到达了距地球约100亿光年的距离,根据尺度和规模,天文学的研究对象可以分为:

行星层次

包括行星系中的行星、围绕行星旋转的卫星和大量的小天体,如小行星、彗星、流星体以及行星际物质等。太阳系是目前能够直接观测的唯一的行星系。但是宇宙中存在着无数像太阳系这样的行星系统。

恒星层次

现在人们已经观测到了亿万个恒星,太阳只是无数恒星中很普通的一颗。

星系层次

人类所处的太阳系只是处于由无数恒星组成的银河系中的一隅。而银河系也只是一个普通的星系,除了银河系以外,还存在着许多的河外星系。星系又进一步组成了更大的天体系统,星系群、星系团和超星系团。

宇宙

一些天文学家提出了比超星系团还高一级的总星系。按照现在的理解,总星系就是目前人类所能观测到的宇宙的范围,半径超过了100亿光年。

在天文学研究中最热门、也是最难令人信服的课题之一就是关于宇宙起源与未来的研究。对于宇宙起源问题的理论层出不穷,其中最具代表性,影响最大,也是最多人支持的的就是1948年美国科学家伽莫夫等人提出的大爆炸理论。根据现在不断完善的这个理论,宇宙是在约137亿年前的一次猛烈的爆发中诞生的。然后宇宙不断地膨胀,温度不断地降低,产生各种基本粒子。随着宇宙温度进一步下降,物质由于引力作用开始塌缩,逐级成团。在宇宙年龄约10年时星系开始形成,并逐渐演化为现在的样子。

看过“天文学基础知识“的人还看了:

1. 古代天文学知识

2. 地球天文知识

3. 天文学知识问答

4. 天文望远镜基本知识

5. 12星座天文知识

6. 古代天文知识

天文学主要要掌握哪些知识点

天文学:探索宇宙的无穷奥秘

天文学,作为自然科学的一个重要分支,主要研究宇宙中天体的性质、演化和终极命运。它既是一门观测科学,又是一门理论科学,其研究范围涵盖了从太阳系到宇宙边缘的广阔领域。

一、天文学基础知识

天文学的基础知识主要涉及天体物理学和天文观测技术。天体物理学是研究宇宙中各种天体的物理特性和相互作用的科学,包括天体的质量、大小、距离、运动、化学组成、磁场、辐射等。天文观测技术则是指利用各种观测设备和方法,获取和研究天体的信息。

在天文学中,有一些基本概念是必须要掌握的,如星座(星座)、星系(Galaxy)、星团(Cluster)、星云(Nebula)、恒星(Star)、行星(Planet)、彗星(Comet)等。此外,天文学中常用的单位,如光年(Light-year)、天文单位(Astronomical Unit)、秒差距(Parsec)等也是必须掌握的基本知识。

二、天文学研究内容

天文学的研究内容包括以下几个方面:

天体演化:研究宇宙中天体的起源、演化和终极命运。例如,恒星的演化过程、行星系统的形成、星系的演化等。

天体物理:研究天体的物理特性和相互作用。例如,恒星的结构和演化机制、行星的轨道和大气组成、星系的运动和结构等。

天体化学:研究天体的化学组成和演化。例如,星际物质的化学反应、行星和卫星的化学组成等。

天文观测技术:研究和开发新的天文观测技术,以提高天文学的观测能力和研究水平。例如,射电望远镜、光学望远镜、卫星探测器等。

宇宙学:研究宇宙的起源、演化和终极命运。例如,大爆炸理论、暗物质和暗能量等。

三、天文学公式与定理

在天文学中,有许多重要的公式和定理,这些公式和定理是理解和研究天文学的重要工具。以下是一些重要的天文学公式和定理:

开普勒定律:开普勒行星运动三定律是行星运动的一般规律,分别是轨道定律、面积定律和周期定律。这些定律是由德国天文学家开普勒通过对第谷的观测数据进行研究得出的。

万有引力定律:由英国物理学家牛顿提出,任何两个物体间都存在引力相互吸引,引力的大小与两个物体的质量成正比,与它们之间的距离的平方成反比。这个定律解释了行星轨道和地球重力场的成因,并且是后来研究天体演化的基础。

广义相对论:由德国物理学家爱因斯坦提出,描述了引力的本质是物质引起的空间时间的曲率。广义相对论不仅解释了牛顿经典力学中的许多现象,而且预言了新的物理现象,如引力透镜效应和黑洞。

光速不变原理:光速不变原理是指光在真空中的速度对于任何观察者都是不变的,无论观察者以何种速度运动。这个原理是狭义相对论的基础,并且与牛顿经典力学中的绝对时空观念不同。

哈勃定律:哈勃定律是指河外星系的退行速度与它们和地球的距离成正比。这个定律是由美国天文学家哈勃通过对多个河外星系进行观测和分析得出的。哈勃定律不仅揭示了宇宙在膨胀的事实,而且为宇宙学的进一步研究提供了重要的基础。

黑洞辐射理论:黑洞辐射理论又称为霍金辐射理论,是由英国物理学家斯蒂芬·霍金提出的关于黑洞性质的理论。该理论认为黑洞并不是完全不发光,而是会以量子效应的方式向外辐射粒子,从而改变了我们对黑洞的认识。

大爆炸理论:大爆炸理论认为宇宙起源于一个极度高温和高密度的状态,被称为大爆炸。该理论认为宇宙起源于一个点,然后宇宙开始膨胀并且宇宙中的物质开始形成。大爆炸理论是目前对宇宙起源和演化的最广泛的科学模型之一,尽管仍然有一些未解之谜和需要进一步研究的问题。

暗物质和暗能量:暗物质和暗能量是指存在于宇宙中但我们无法直接观测到的物质和能量形式。暗物质对宇宙中的星系和星团有引力作用,而暗能量则对宇宙起着斥力作用。暗物质和暗能量的存在解释了许多宇宙观测现象,并且是当前宇宙学研究中最重要的课题之一。

赫罗图:赫罗图是表示恒星温度和光度关系的图表。在赫罗图中,大多数恒星都落在一条对角线上,称为主序带。不同类型的恒星分布在赫罗图的不同位置上,

通过赫罗图,我们可以了解恒星的光度和温度,进而了解恒星的结构和演化。

10. 哈勃序列:哈勃序列是由美国天文学家埃德温·哈勃提出的星系分类序列,根据星系旋臂的形状将星系分为旋涡星系、椭圆星系和不规则星系三大类。通过哈勃序列,我们可以了解星系的形态和演化。

11. 宇宙微波背景辐射:宇宙微波背景辐射是指充满整个宇宙的微波辐射,它的温度大约为2.725开尔文。宇宙微波背景辐射是宇宙大爆炸后留下的余温,它的发现是现代宇宙学的重要里程碑,为我们提供了研究宇宙早期演化的重要线索。

以上这些公式和定理在天文学中扮演着重要的角色,它们帮助我们理解宇宙的起源、演化和终极命运。然而,天文学的研究远不止这些公式和定理,它更是一种探索和发现的精神,是对无尽宇宙奥秘的追求。

太阳系一景

发光的亮星(想象)

浩瀚宇宙永远值得我们探索。

四、天文学的意义

天文学作为一门古老的学科,在人类文明的发展历程中起到了重要的作用。首先,天文学的发展推动了人类对宇宙的理解和认知,使我们从地球走向宇宙,从有限走向无限。其次,天文学的研究也对其他学科产生了深远的影响,如物理学、化学、地理学、哲学等。最后,天文学的研究对于我们的生活也有着重要的意义,例如卫星导航、气象预报、太空探索等都离不开天文学的研究成果。

五、结语

天文学是一门充满奥秘和挑战的学科,它让我们有机会探索宇宙的边缘,了解天体的起源和演化。随着科技的进步和观测手段的提高,天文学的研究成果将会更加丰富和深入,我们对宇宙的理解也会更加全面和深入。作为人类,我们有幸能够生活在这样一个探索宇宙的时代,能够有机会揭开宇宙的神秘面纱,这是我们共同的荣耀和责任。

天文学知识

最常识的:

21厘米辐射:由星际空间中寒冷稀薄的氢云发射的电磁辐射。

3α过程:在核聚变反应中,三个氦核聚合成一个炭核的过程。

3千秒差距旋臂:一团以53公里/秒的速度远离银河中心的中性氢云。

埃:长度单位,1埃=1e-10米,通常用来度量光的波长。

矮新星:会产生周期性的类似新星爆发现象的天体,成因可能是双星系统中的白矮星。

氨基酸:组成蛋白质的有机分子。

暗物质:用来填补理论中质量缺陷的假想物质。

暗线光谱:见吸收光谱。

暗星云:由尘埃和气体等不发光物质组成的星云。

奥尔特云:位于太阳系外层的云团,被认为是彗星的发源地。

巴尔莫线系:氢原子的一组光谱线,位于可见光和近紫外区。

白矮星:白矮星是内核塌缩后已经死亡的恒星,大小和地球类似。

百万秒差距(Mpc):一百万个秒差距。

半长轴:椭圆长轴的一半。

棒旋星系:一种漩涡星系,内部的旋臂呈明显的棒状。

暴胀宇宙:一种存在早期膨胀阶段的大爆炸宇宙模型。

倍利珠:日全食时通过月球的起伏表面射出的太阳光。

本影,暗影:在影子中,光线被完全遮蔽那个区域。

变星:亮度周期变化的恒星。

标准时:等于时区中央经度上的地方平时。

表岩屑:一种由破碎的岩石屑构成的土壤。

波长:两个相邻的波峰或者波谷之间的距离,通常用λ表示。

波长最大值:完全辐射体发射的波谱中能量最大的谱的波长,仅仅与物体的温度有关。

捕获假说:一种关于月球起源的理论。

不规则星系:外表不规则的巨大气体云,包含大量的星族I和星族II恒星,但没有旋臂。

长周期变星:光变周期在100到400天的变星。

超导体:对于某些物体,当温度降低到一定程度的时候,电阻值将会降为零,处于这种状

尘埃尾:由尘埃等不带电物质构成的慧尾。

赤道式装置:可以在赤经和赤纬方向运动的装置。

赤纬:用于天球的一种坐标,类似地球上的纬度。

臭氧层:地球大气层的一层,位于地表以上15-30km,具有吸收紫外线的作用。

春分,春分点:天球上太阳由南半球移向北半球在天赤道上经过的那一点。此时大约是3 月21日左右。

磁层:行星的磁场。

次大气层:从行星内部逃逸出来的富含二氧化碳的气体。

次极小:在食变双星的光变曲线中,较浅的那一次交食。

次镜:反射望远镜中将光线发射到一点以利于观测的那面镜子。

大潮:满月或新月时出现的大幅度的海潮。

大碰撞假说:认为月球形成于一次小行星与地球的碰撞。

大气窗口:电磁波谱中可以通过地球大气层的部分,包括射电、红外和光学波段。

大统一理论:将电磁力、强相互作用和弱相互作用统一为一种作用的理论。

带纹:木星大气层中的条状云带。

大爆炸理论:一种认为宇宙起源于大爆炸的理论。

灯塔理论:认为脉冲星是自传的中子星的一种理论。

光年:光在一年中走过的距离。

地方天球子午圈:过天顶和天低的南北方向大圆

地平式装置:可以在水平和竖直方向移动的望远镜系统。

地震波:一种通常在地震时才出现的可以横穿地球的机械波。

第二星族:含重元素较少的恒星,此类恒星比较老,多分布于银核和银韵中。

第一星族:含重元素较多的恒星,此类恒星比较年轻,多分布于银盘上。

电波星系:一种发射强射电信号的星系。

电磁辐射:在空间中传播的电磁场。如:光,无线电波

电荷耦合元件( CCD ):半导体光电成像设备。很适用于天文观测。

电子:一种带单位负电荷的小质量粒子。

电子伏特:能量单位,等于1单位电子电量乘以1伏特。

冬至,冬至点:天球上太阳距离地球最近的那一点。也就是大约每年12月22日。

动星系核:发出很强辐射的星系。

多普勒效应:由被测物体运动导致的谱线波长变化。

多普勒致宽:由气体中原子的运动造成的谱线加宽。

发电机效应:一种理论,认为地球磁场是由熔融地核产生的。

发射谱线:由原子辐射出的光子在光谱中产生的亮线。

发射星云:被恒星的紫外辐射激发而发光的气体云。

发射光谱:包含发射线的光谱。

反射望远镜:利用反射镜将光汇聚到焦点上成像的望远镜系统。

反射星云:通过反射星光而发光的星际尘埃云。

范艾伦带:由地球磁场俘获的高能离子形成的辐射带。

非宇宙学红移:不是由宇宙膨胀效应所导致的红移。

分光视差:分析恒星谱线以测定恒星距离的方法。

分光双星:从子星始向速度的变化而判知的恒星。

分裂假说:一种关于月球起源的假说,认为月球是从地球中分离出去的。

分子云:包含大量分子的浓密星际气体云。

封闭宇宙:一种认为有足够的物质能够使宇宙停止膨胀的宇宙模型。

辐射点:发生流星雨的时候,将流星的轨迹反向延长将会汇聚在一点上,这一点称作辐射点。

辐射纹(月面):陨星撞击月亮表面的时候,所产生的很多由撞击弹坑向外辐射的白色条纹 。

辐射压:当物体的表面吸收了光子以后,会受到一个压力。

高斯:磁感应强度的单位。

各向同性:宇宙学假设,认为宇宙在各个方向上性质相同。

共同吸积假说:一种认为月球和地球共同形成的理论。

共振:两个周期运动相互同步的现象。

光变曲线:亮度随时间变化的曲线,常用来分析变星和食双星。

光度:星体在一秒钟内辐射出的总能量。

光度计:用于测量天体辐射强度的仪器。

光谱型:恒星在哈勃系统中的类型。

光球:太阳的可见表面。

光学双星:看上去很接近的两颗恒星,但实际距离可能非常遥远。

哈勃常数:宇宙学基本参数,用以度量宇宙的大小和年龄。

哈勃定律:星系的退星速度和其距离呈线性关系。v = H0×d 即退行速度v与距离d成正比。

氦闪:在巨星内发生的氦的聚合发应。

寒武纪时期:5-6亿年前的地质时期,在这段时期地球上的生命开始大量出现。

核合成:发生在恒星内部和超新星爆发时的重元素合成过程。

褐矮星:是构成类似恒星,但质量不够大,不足以在核心点燃聚变反应的气态天体。其质量在恒星与行星之间。

赫罗图:将大量恒星以其光度和表面温度为横纵坐标画成的统计图 。

黑洞:由大质量恒星塌缩成的特殊天体,具有极强的引力场。

黑体辐射:假设的理想辐射体,其辐射谱仅与温度有关。

黑矮星:冷却后的白矮星。

恒星密度函数:用来描述空间中不同类型恒星丰度的函数。

恒星模型:描述恒星内部各层状态的的一组参数。

恒星年:太阳在天球上连续两次通过某一颗恒星所用的时间。

恒星日:通过恒星位置确定的地球自转周期。

恒星视差:判断恒心距离的方法。

横向速度:恒星速度在垂直视线方向上的分量。

红外辐射:波长位于可见光和无线电波之间的电磁波。

红外辐射:波长位于可见光和无线电波之间的电磁波。

红移:当源相对于观测者后退的时候,由它发出的光波的波长会变长。

蝴蝶图:用来标记太阳黑子分布的图,形状类似蝴蝶。

化学演变:在原始地球上复杂分子形成的化学过程。

黄道:太阳在天空走过的轨迹。

黄道带:天球上以黄道为中心,环绕天球的一个区域。

解像力:望远镜分辨观测对象细节的能力,由物镜的直径决定。

金牛座T型星:一种周围包裹了很多气体和尘埃的年轻恒星。

金属:在天文学中,比氦重的元素都叫金属。

近日点:运行轨道上距离太阳最近的点。

巨大分子云:质量非常巨大的气体云,通常是恒星诞生的场所。

巨星:表面温度较低的高光度星体,非常巨大(10-100倍太阳直径)。

距离模数:视星等和绝对星等之差,用来度量天体的距离。

聚光率:衡量望远镜聚光能力的量。

绝对零度:温度的最低值(零下273.15摄氏度)。任何粒子在这个温度的动能均为零。

绝对热星等:星体各个波段辐射能量之和所对应的绝对星等。

绝对视星等(MV):将天体置于10个秒差距的距离上所得到的视星等。

均质性:宇宙学的一种假设,认为宇宙在大尺度上是均匀的。

开尔文温标:从绝对零度起算的温标。

开普勒运动:遵从开普勒定律的运动。

考古天文学:主要研究古代天文学和古代文化的学科。

科尔黑洞:广义相对论引力场方程的一个解,用于描述旋转黑洞。

滤光片:对光波具有选择透过性的器件。

脉冲星:短周期射电源,可能是自转的中子星。

米勒实验:模拟原始地球环境来合成氨基酸和其它有机物的试验。

米粒组织:在太阳表面的冷热气体对流现象。

明暗界线,昼夜界线:月亮或行星上将昼夜区分开来的大圆。

明线光谱:包含发射线的光谱。(参见:发射线)

木星条纹:木星上与赤道平行的黄白色的环带。

目视双星:一种在望远镜中可以将两颗子星分辨开来的双星系统。

秒差距:以1AU为基线,天体的视差为1弧秒的距离。

牛顿:力的单位。

偶发流星:单个出现的,不属于任何流星群的流星。

帕申线系:位于红外波段的一组氢原子光谱。

碰撞致宽:由粒子碰撞导致的光谱线加宽现象。

色指数:恒星颜色的数字度量方法。

平方反比定律:作用强度按距离平方衰减的规律,如:引力。

平太阳日:太阳两次经过子午线的平均时间间隔。

平坦宇宙:一种基于平直时空的宇宙模型。

谱线轮廓:光强随波长变化的曲线。

千秒差距(KPC):一千个秒差距,3260光年。

钱德拉赛卡极限:1.4倍太阳质量,白矮星的质量极限。

氢离子区:存在于一颗高温恒星周围的电离氢区域。

秋分点:太阳自北向南穿越天赤道的点。

球粒:陨石中的球状玻璃质物体,由硅酸盐溶解形成。

球粒陨石:包含球粒和可挥发物的陨石。

球面像差:与物高无关而与入射光瞳口径三次方成正比的像差。

球状星团:在几十光年的球型范围内包含几万到几十万颗恒星。

全食:日全食--从地球上看,月亮将太阳明亮的表面完全挡住而失去光芒。

日环食:太阳光球层以环状出现在月球周围的日食现象。

日冕:较暗的太阳外层大气。由稀薄的高温离子气体构成。

日冕洞:在x射线波段观察到的太阳表面的黑暗区域。

儒略历:公元前46年编制的历法。

赛曼效应:当原子处在磁场中的时候,它的谱线将会分裂成很复杂的成分。

叁轴椭球:三个轴都不相等的几何固体球。

沙罗周期:古巴比伦人发现日月食具有223个朔望月的周期,这223个朔望月正好等于18年 。

闪焰耀斑:一种太阳表面的剧烈爆发现象。

甚长基线干涉仪(VLBI):一种为了将射电源的细节看得更清楚而将射电望远镜之间的距离 。

生光:发生食的时候,当太阳的边缘从月亮后面刚刚露出来的时刻。

石陨铁:主要成分为铁和石头的陨石。

石质陨石:主要成分为石头的陨石。

食双星:双星系统的两颗成员星可以相互遮掩。

史瓦西半径:黑洞周围视界的半径。

事件视界:黑洞的边界,在边界内发生的事件不能被边界外的观测者所看到。

视差:由于观测者位置的变化而导致观测目标位置发什的变化。

视目视星等(mv):人眼看到的天体的亮度。

视相,大气宁静度:它是大气宁静度的一种量度,同大气湍流分布和变化密切相关。

视向速度,径向速度:运动天体靠近或远离地球的速度。

受激原子:核外电子跃迁到高能态的原子。

疏散星团:由10 到10000颗星组成的比较松散的集合体。

束缚能:使电子从原子脱离所需要的能量。

双生子佯谬:当一对孪生兄弟的其中一个以接近光速的速度旅行之后会比另外一个年轻。

双星:两颗比较接近、绕着共同质量中心旋转的恒星。

水洞:在射电观测中,波长介于21厘米氢线和18厘米羟基线之间的电磁波谱。

速度:衡量物体运动快慢和方向改变的量。

速度弥散度方法:一种通过测量星系内的速度分布来确定星系质量的方法。

岁差:地球自转方向的缓慢变化。

太阳常数:从大气外测量得到的太阳总辐射量。

太阳风:从日冕逃逸出来吹遍整个太阳系的高能粒子流。

太阳星云理论:一种认为太阳系内的行星同太阳都是在同一个星云中形成的理论。

碳氮氧循环:恒星中发生的一种核反应。

碳引爆:在巨星内部发什的炭聚合反应,可能是部分超新星爆发的原因。

特洛伊小行星:位于木星轨道上超前或者落后木星60度的拉格朗日点上的小行星。

天底:天球上和天顶相对的点。

毫微米:10e-9米。

星云:宇宙中的尘埃气体云。

天顶:天球上位于观测者头顶正上方的那一点--方向同地心引力方向相反(参见 天底 )

天顶角:天顶方向和所测量物体方向所夹的球面角。

天球:假想中的一个半径很大的球,所有天体都位于球上。用于标定天体位置。

天球赤道:想象中的一条线,是地球赤道向外延伸和天球的交线。

天文单位:日地之间的平均距离。大约是1.5e8 km。

同位素:具有相同质子数不同种子数的原子。

脱离速度:物体要脱离某一星体表面所需的最小速度。

椭圆星系:没有悬臂,外形成椭圆状的星系。

韦得曼花纹:铁陨星中由于镍铁合金的存在而形成的一种区域性花纹。

未压缩密度:再没有重力压缩下的行星质量。

温度:一种衡量物质内部分子或原子的随即运动速率的物理量。

稳态学说:一种认为宇宙不再进化发展的理论。

无球粒陨石:不包含球粒陨石或可挥发物的石质陨石。

西佛星系:一种非正常星系,它们通常具有很高的亮度和一个很小的亮度波动的星系核。

吸积:固体颗粒聚集成较大的颗粒。

吸积盘:在致密天体周围形成的气体盘。

吸收光谱:有吸收线的光谱。

吸收谱线:由于光子被原子或分子吸收而产生的光谱中的暗线。

夏至,夏至点:天球上太阳距离地球最远的那一点。也就是大约每年6月22日。

相对论性喷流模型:一种解释类星体超光速喷流现象的模型。

相对年龄:通过其它特征判断的地理年龄。

像加强器:在望远镜上使用的一种用来提高星像亮度的电子仪器。

消光:由介质造成的光线减弱现象。

消色差透镜:由多个透镜组成的光学器件,可以消除色差。

小行星:一种小天体,大量存在于火星和木星之间的小行星带中。

蝎虎BL天体:类似类星体的一种奇怪天体。

斜长石:在月球高地上常见的一种矿石,由几种硅酸盐组成。

新星:一种星体光度突然增大现象,成因可能是双星系统中的白矮星爆发。

星等:标记天体亮度的标准,星等越大则星越暗。

星际红化:由于蓝光被星际介质散射所造成的星像红化现象。

星际介质:在星际空间存在的气体和尘埃。

星际吸收线:在恒星光谱中由于星际气体吸收而产生的暗线。

星际吸收线:在恒星光谱中由于星际气体吸收而产生的暗线。

星群:和星座类似的用来标记一群恒星的符号。

星协:没有聚集成星团但有相同运动趋势的恒星群体。

星座:用以标记一组恒星的名称。通常使用神话人物。

行星状星云:受中心高温天体的辐射所激发而发光的气体壳层,看上去类似行星。

玄武岩:一种由岩浆形成的火山岩。

旋臂:漩涡星系中由亮星、亮星云、气体、尘埃所构成的,由星系中心延伸到星系边缘。

压力致宽:由于恒星大气中的压力而导致的谱线加宽现象。

掩星:一颗天体将另一颗天体遮盖的现象。

液态金属氢:氢在高压下的一种状态,具有良好的导电性。

一般性原则:一种认为可以将地球上的物理定律应用到宇宙任何角落的假设。

音叉图:一种星系分类方法--将星系分成椭圆星系、漩涡星系、不规则星系。

银冕:低密度的银晕外层。

引力波:由广义相对论所预言的引力能传播方式。

引力红位移:由于光子脱离重力场所造成的波长增加现象。

隐带:银河周围的那些由于河内尘埃阻挡而看不到其它星系的区域。

宇宙射线:闯入地球大气层的高速粒子。

宇宙学:研究宇宙的规律、起源和演化的科学。

原恒星:正在塌缩形成恒星的气体云。

原始大气层:地球最早的大气,由原是太阳星云的物质构成。

原始黑洞:在大爆炸初期形成的小质量黑洞。

日珥:太阳表面的一种剧烈爆发现象。

远日点:在运动轨道上距太阳距离最远的点。

月海:月球表面的低地。

质光关系:对于一般恒星存在的质量越大光度越大的关系。

月食:当月球进入地球阴影时所产生的现象。

跃迁:电子由一个能级跃向另一个能级的运动。

陨石:在大气层中没有被烧尽而落到地面上的流星。

晕:漩涡星系外层的球状区域。

再发新星:每隔几年就要爆发一次的恒星。

脏雪球理论:一种被普遍接受的彗星结构理论。

造父变星:一种光变周期在1-60天之间的变星,其光变周期和光度有确定关系。

折射望远镜:通过透镜折射光线成像的望远镜系统。

哲伦云:距离银河系较近的不规则星系,在南天可见。

针状体:位于太阳色球层上,像针一样纤细的发射物。

振荡宇宙模型:认为宇宙会在大爆炸和大挤压之间来回震荡的宇宙模型。

震波仪:一种纪录地震波的仪器。

转离点:赫罗图上恒星由主序转向红巨星的转折点。

质子:氢原子核,带有一个单位正电荷的核子。

致密星体:由塌缩形成的天体,如:白矮星、中子星、黑洞。

中子:质量接近质子,不带电的核子。

中子星:一种几乎全部由中子构成的高密度天体。

重力加速度:由重力引起的加速度,通常用来描述星体表面重力的大小。

周光图:标明造父变星周光关系的图表。

主动光学:由计算机控制的光学系统,可以通过随时调整系统参数达到最佳成像效果。

主星序:赫罗图上从左上到右下的一条带状区域,90%的恒星都集中在这里。

转移钟:一种可以使望远镜固定指向某一颗恒星的装置。

紫外辐射:一种波长比可见光略短,比X射线略长的电磁波。

自持续恒星形成:一种可以用来解释旋臂存在的机制。

自适应光学:可以部分消除大气扰动的望远镜成像系统。

自行:天体位置在天球上的变化。

关于“有趣的天文小知识”这个话题的介绍,今天小编就给大家分享完了,如果对你有所帮助请保持对本站的关注!

本文来自作者[库东润]投稿,不代表发明号立场,如若转载,请注明出处:https://faiemp.cn/cshi/202501-978.html

(357)

文章推荐

  • 健康科普文章_1

    网上有关“健康科普文章”话题很是火热,小编也是针对健康科普文章寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。给你几个资料,都是关于营养的,但是不知道适合不适合你。看看再说吧。这是人体每天必须的营养素,需要每天从饮食里补充的。人体共需要七大营养素:1:蛋白

    2024年12月15日
    9
  • bbc都拍什么纪录片经典的有什么

    网上有关“bbc都拍什么纪录片经典的有什么”话题很是火热,小编也是针对bbc都拍什么纪录片经典的有什么寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。BBC之深海灾难世界上最深的漏油事件BBC之风暴星球抵御外星球超破坏BBC之动物犯罪现场嫌犯野生动

    2024年12月15日
    9
  • 怎么选地球仪

    网上有关“怎么选地球仪”话题很是火热,小编也是针对怎么选地球仪寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。一、按需要选择数地球仪选购地球仪应从实际需求中归纳出合理的品质与功能。1寓教于乐:如果你打算把地球仪放在家里,而且有小孩的话,那智能语音地

    2025年01月10日
    296
  • 幼儿园中班美术教案《海底世界》

    网上有关“幼儿园中班美术教案《海底世界》”话题很是火热,小编也是针对幼儿园中班美术教案《海底世界》寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。 作为一名教师,常常要写一份优秀的教案,编写教案助于积累教学经验,不断提高教学质量。那么写教案需要注意哪些问题呢?

    2025年01月11日
    323
  • 有趣的科普问题及答案英语

    网上有关“有趣的科普问题及答案英语”话题很是火热,小编也是针对有趣的科普问题及答案英语寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。Inthetechnicalactivity,readseachkindofmaterial,underst

    2025年01月11日
    303
  • 怎么才能开发大脑?

    网上有关“怎么才能开发大脑?”话题很是火热,小编也是针对怎么才能开发大脑?寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。开发大脑潜能训练的六大方式:1、联想记忆法演员们也会使用类似的技巧。他们会给自己的台词加上情感色彩,会把语言和动作联系起来,记忆那些伴随有

    2025年01月11日
    350
  • 有哪些育儿好书推荐_1

    网上有关“有哪些育儿好书推荐”话题很是火热,小编也是针对有哪些育儿好书推荐寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。01、《西尔斯怀孕百科》怀孕了,一切都是未知,真真是啥也不懂啊,又不好意思开口问人,怎么办?建议看看美国育儿教父威廉·西尔斯爷爷团队出

    2025年01月12日
    321
  • 有哪些常识最后演变成了冷知识-_2

    网上有关“有哪些常识最后演变成了冷知识?”话题很是火热,小编也是针对有哪些常识最后演变成了冷知识?寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。常识演变成了冷知识的例子:1、香蕉其实是一种草。2、澳大利亚的国宝级动物是考拉,而并非袋鼠。3、鸵鸟的眼睛比脑袋大

    2025年01月13日
    341
  • 有哪些名贵的中药材?

    网上有关“有哪些名贵的中药材?”话题很是火热,小编也是针对有哪些名贵的中药材?寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。在中药里,药材的种类是有很多的,而且药材的作用和配伍更是多种多样。有的药材随处可见,在田埂上稻田里不用去可以栽种就会有,而有的就很少见

    2025年01月13日
    338
  • 怎么科学看待细菌?

    网上有关“怎么科学看待细菌?”话题很是火热,小编也是针对怎么科学看待细菌?寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。在现实生活中,不少人一提起细菌就会皱起眉头,不分青红皂白把它们一律看成是人类健康的敌人,这可是一个认识误区。其实,细菌是人类的终生伙伴。在

    2025年01月13日
    261

发表回复

本站作者后才能评论

评论列表(4条)

  • 库东润
    库东润 2025年01月13日

    我是发明号的签约作者“库东润”!

  • 库东润
    库东润 2025年01月13日

    希望本篇文章《有趣的天文小知识》能对你有所帮助!

  • 库东润
    库东润 2025年01月13日

    本站[发明号]内容主要涵盖:国足,欧洲杯,世界杯,篮球,欧冠,亚冠,英超,足球,综合体育

  • 库东润
    库东润 2025年01月13日

    本文概览:网上有关“有趣的天文小知识”话题很是火热,小编也是针对有趣的天文小知识寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。一、天王星和太阳系...

    联系我们

    邮件:发明号@sina.com

    工作时间:周一至周五,9:30-18:30,节假日休息

    关注我们